
Simona Cohen, Michael Factor, Dalit Naor 

Preservation DataStore (PDS): a demonstration of Preservation Aware 

Storage 

 

slide 1 Preservation DataStores, or PDS, is a preservation-aware open archival storage 

system being developed at the IBM Haifa Research Lab. 

 

slide 2 PDS is preservation-aware storage, which means that the storage component of 

a digital preservation system has built in support for both bit preservation and 

logical preservation. 

The storage is aware of the OAIS based preservation objects that it stores and 

is capable of offloading functionality that is traditionally performed by the 

application. Among these functions you can find: handling metadata, calculating 

and validating fixity, documenting provenance events, managing the 

Representation Information (RepInfo) of the Preservation Description 

Information (PDI), and validating referential integrity. 

PDS supports loading and execution of storlets, which are execution modules 

for performing data intensive functions such as data transformations and fixity 

calculations close to the data. 

Offloading metadata management and data intensive functions to storage 

decreases the probability of data loss by minimizing data transfers between 

storage and the application. It simplifies applications by decreasing the need for 

data management at the application level and provides improved performance 

and robustness. 

Another important feature is the physical co-location of data and metadata, 

which ensures that metadata is not lost if raw data survives. Related Archival 

Information Packages (AIPs) are also co-located on the same media. 

PDS is able to generate AIP identifiers to satisfy the cases in which AIPs are 

created within PDS or cases in which AIPs are ingested without an assigned 

AIP ID. 

 

slide 3 PDS is built on layers, each based on open standards. 

The preservation engine layer implements the PDS API, which is externalized 

using web services. It’s based on OAIS. 

The XAM mid-layer is based on the XAM emerging standard that provides 

complex objects for bundling pieces of data and metadata and is specialized for 

reference data. The object layer is currently based on the OSD standard. 

 

slide 4 Here you can see how an AIP is represented in the preservation engine. 

An AIP is built from information objects. Each information object contains a 

single instance of data, and zero or more instances of RepInfo. An AIP contains 

the content information, which is an information object. 



Each section of the PDI is also an information object. For instance, the 

provenance contains the provenance data that lists the events in the life of the 

data. Its RepInfo may describe the specific structure in which the provenance 

data is kept. 

In PDS, RepInfo is also an AIP, since RepInfo is a shared resource in the 

system that requires a unique ID. It has its own RepInfo, thus forming the 

RepInfo recursive network. 

 

slide 5 The preservation process of an AIP can be distinguished into 3 phases: the 

ingest process in which the AIP is stored, the access process where the AIP is 

retrieved, and the preservation process between them. 

While the data is preserved we need to maintain the ability to restore the bits 

and to provide bit preservation. Bit migrations transfer the bits from one media 

to another when the media becomes obsolete. 

To maintain the understandability of the data. we need to keep the data and 

accompanying metadata updated. This means performing format migrations 

when the format becomes obsolete and continuing to update the PDI and 

RepInfo. 

For example, a change in the knowledge base of the designated community 

may require adding RepInfo. 

Fixity calculations need to be performed periodically and provenance updates 

need to occur at each event in the life of the data such as migration. 

When we conduct data transformations, the transformation module is packaged 

as an AIP and preserved. The transformation result is also preserved as a 

separate AIP, along with the original AIP, representing another version of the 

original. Its AIP ID will be a version of the original data AIP ID to maintain the 

connection between different versions of the same data. 

As a result, by retrieval time, the original AIP may have several versions and 

copies. 

 

slide 6 The following was presented in the CASPAR 2nd review and involved the 

Registry, Packaging and PDS components. It used MST atmospheric data from 

the CASPAR scientific testbeds. 

The scenario showed how the atmospheric scientists transited data from one 

format to another, and how this transit affected the preserved data, keeping its 

usability and understandability in light of this change. 

The following demonstration shows the PDS archival storage functionality that 

was used in that demo. You will be able to see how the PDS GUI is used 

manually to perform these functions, while complying with the OAIS 

preservation model. 

 

slide 7 To start with, here is some background on the data. 

MST data provides wind measurements, measured by a specific radar placed in 

the UK. This data is highly complex and preserved for the atmospheric scientific 

community. 



It requires preservation for a long period of time for comparative research. 

It should be kept in a format that is supported by the majority of the community 

to enable interoperability. 

 

slide 8 The British Atmospheric Data Center recommends using a self-describing 

format for this complex data. 

Currently 2 formats compete in the community: NASA-AMES, which is an ASCII 

format, and NetCDF, which is a binary format. 

The current decision is to use the NetCDF format. 

 

slide 9 In the following demo you will see how this data is ingested and preserved in 

PDS, and how PDS supports its continuous understandability and usability. 

Let’s see how this AIP works. 

 

slide 10 The MST AIP is packaged in XFDU packaging format. It contains a manifest file 

that organizes the package and contains some embedded metadata. 

The raw data and some of the metadata are provided in files external to the 

manifest. All these files are packed in a single ZIP file. 

If you take a look inside the data file you can see the NetCDF self-describing 

header and the binary data. 

 

slide 11 To preserve this AIP, we ingest it to PDS. 

Inside PDS, on ingest, the ingest web service is called with the packaged AIP. 

The preservation engine unpacks the AIP, generates an AIP ID for it, computes 

fixity, and adds an “ingest” provenance event. 

It then creates XAM objects and maps the AIP into them. 

These XAM objects are then mapped to OSD objects and stored at the OSD. 

On the way back, the AIP ID is returned to the caller. 

 

slide 12 Next you will see how PDS GUI is used to ingest the MST AIP. 

 

slide 13 And here is the PDS GUI that we use to trigger the PDS functions published as 

web services by the PDS server. 

We choose the ingestAip method, browse for the MST AIP, and send the 

request to the PDS server. 

The return value is the AIP ID assigned by PDS. 

After ingest, the different sections of the AIP can be accessed separately. For 

example, the content data RepInfo. 

We choose the accessRepInfo method, insert the AIP ID we received on ingest, 

and send the request. 

The returned table includes the RepInfo records of the MST NetCDF AIP. The 

first RepInfo record refers to RepInfo that was stored in the Registry and the 

CPID is provided. 

The other RepInfo records refer to RepInfos that were embedded in the AIP and 

therefore PDS ingested each of them as a separate AIP. The resulting AIP IDs 



were stored as RepInfo records. 

 

slide 14 Let’s suppose some time passes. 

 

slide 15 For several reasons it is decided to perform format migration of the preserved 

MST data from NetCDF to NASA-AMES format. 

Perhaps the NetCDF format is no longer supported, the community became 

biased towards ASCII formats, and NASA-AMES has become the preferred 

data format of the atmospheric scientists community. 

In addition, it was decided to add a second view path to the data, providing an 

image view for users with limited access permissions. 

 

slide 16 To perform a transformation, you need to load a transformation module to PDS. 

Inside PDS, on LoadTransformation, an AIP that contains a transformation 

module is loaded into PDS. 

This load operation includes the registration of this transformation module in the 

system and a regular ingest of its AIP into the archival storage system. 

 

slide 17 After the transformation module is loaded, we trigger the transformation by 

calling the TransformAip method. 

Inside PDS, on TransformAip, both the target AIP and the transformation AIP 

are accessed. The transformation is applied to the content data of the target 

AIP. 

To preserve the result, PDS builds a new AIP that contains the transformed 

data, new RepInfo to interpret it (which is supplied by the transformation AIP), 

and an appropriate PDI that is generated internally by PDS. 

The new AIP is a version of the original AIP. 

 

slide 18 Next, you will see how the PDS interface is used to maintain the usability and 

understandability and to support the interoperability of the preserved data. 

A transformation module that converts MST NetCDF data to NASA-AMES 

format is loaded and executed in PDS. 

 

slide 19 We choose the LoadTransformation method, and similar to ingest, browse for 

the transformation AIP that should transform NetCDF to NASA-AMES. We then 

send the request. 

The return value is the AIPID assigned by PDS. 

We choose the TransformAip method, and supply the AIP ID of the MST 

NetCDF AIP and the AIP ID of the transformation AIP from NetCDF to NASA-

AMES. 

The return value is the AIPID assigned by PDS to the new AIP that contains the 

MST data in NASA-AMES format. 

This AIPID is a version of the MST NetCDF AIP. They share the logical ID part 

and have different version IDs. 

In the same manner, we perform a second transformation from NetCDF to PNG 



plot, which results in another version of the original AIP. 

 

slide 20 Suppose more time passes. 

 

slide 21 Inside PDS, on access, the Preservation Engine looks up the XAM ID that 

corresponds with the received AIP ID, and reads the appropriate XAM objects. 

XAM retrieves its objects from the object layer. 

When the AIP is in the Preservation Engine, it validates the AIP ID and its fixity, 

and adds a provenance event to document this access operation. 

 
slide 22 This brings us to the last phase of this demo, which shows how PDS preserves 

the MST data. 

 

slide 23 First, we query PDS for all the versions originating from the same MST NetCDF 

AIP. 

We choose the QueryAipIdSet method and supply the MST NetCDF AIPID. 

The result is 3 versions for that AIP: NetCDF format, NASA-AMES format, and 

PNG plot. 

Now we access each of these AIPs. 

PDS gives us separate access to the different AIP sections. 

First, we access the content data of the MST NASA-AMES AIP. 

We choose the accessContentDataAsLink method that places the content data 

in a staging area for downloading. 

We supply the MST NASA-AMES AIPID and send the request. 

The return value is a reference to a staging area for downloading the content 

data. 

You can see the MST data in NASA-AMES ASCII format. 

Since PDS created a complete AIP for this data transformation result, we can 

also access the PDI metadata sections. First, we access the Provenance... 

We choose the accessProvenance method and supply the MST NASA-AMES 

AIPID. 

The result is a table that contains the provenance records of the MST NASA-

AMES AIP. The first record describes the creation of the AIP, which was the 

result of data transformation. The others document the ingest and access 

operations. 

Then, we access the Fixity. 

We choose the accessFixity method and supply the MST NASA-AMES AIPID. 

The result is the fixity record generated by PDS, which documents the fixity 

calculation that took place when this AIP was ingested. 

Then we access the Reference. 

We choose the accessReference method and supply the MST NASA-AMES 

AIPID. 

The result includes a single reference record that was generated by PDS and 

contains the AIP ID of this AIP. 

Finally, we access the content data of the MST PNG plot AIP. 



Again, we choose the access Content Data As Link method, and supply the 

MST PNG AIP ID. 

Now you can see the MST data as a plot in PNG format. This provides us with 

the requested additional view path. 

 

slide 24 In this demonstration, you saw how PDS can be used to ingest an AIP and 

access its different sections. 

PDS supports the continuous usability and understandability of the ingested 

data by enabling us to load and execute transformation modules and by 

maintaining the metadata sections of the AIP. 

 

 


