
Yannis Marketakis

Preservation Information Conceptual Model

slide 1 In this statement, Yannis Marketakis presents the Preservation Information

Conceptual Model and the related knowledge management issues.

slide 2 After an introduction, some aspects concerning preservation are identified; the

presentation then focuses its attention on two issues, the preservation of intelligibility

and the preservation of provenance, and on one of the CASPAR key components,

i.e. the Knowledge Manager. Finally, the data which is currently available followed

by the current deployments of the software components are shown.

At the end of the presentation, there is a video demonstration regarding the

GapManager.

slide 3 In the digital preservation context, there are some important questions concerning:

• What digital information preservation is;

• What kind and how much Representation Information (RepInfo) we need, and

how this depends on the Designated Community;

• What kind of automation we could offer.

The contribution of CASPAR consists of a formalization of intelligibility and

intelligibility gap through the notion of dependency. This approach can provide some

answers to the above issues.

slide 4 Two examples, the Phaistos disk and the pyramids, bear evidence to the fact that

not always do we have the ability to understand the meaning of the resources which

we preserve or to reconstruct the processes of their creation.

slide 5 Analogous problems are related to digital preservation which requires the certainty

of the capacity to understand a bits stream in the future and also the ability to

preserve the intelligibility and the provenance of a resource, e.g. for a satellite image

it is necessary to maintain information regarding the way in which it was originally

derived, when and by whom it was taken and how it has been processed.

slide 6 The example above makes it evident that not only do we need to preserve the bits,

but also the information carried by digital objects and what is necessary for their

accessibility, integrity, authenticity provenance and intelligibility by human or artificial

actors.

slide 7 Concerning the intelligibility, the RepInfo is one of the key concepts which are

offered by the OAIS conceptual model.

An Information Object needs RepInfo to be understood; in turn, the RepInfo is an

Information Object itself and requires other ReInfo. A way to stop this potentially

long chain of RepInfo is necessary.

slide 8 In order to abstract from the various domain-specific details, a general module has

been adopted; it consists of two main concepts: the notion of module and that of

dependency.

A module could be a piece of software/hardware or a knowledge model, formally

expressed (e.g. an ontology) or implicitly expressed.

The notion of dependency says that a module t depends on t’, if t requires t’ in order

to be understood, managed and so on.

So, the RepInfo requirements of OAIS have been modeled as dependencies

between modules.

slide 9 Intelligibility can be formalized based on this notion.

For instance:

• to understand a file named README.txt which contains an English test, a text

editor is needed in order to open it, but also the knowledge of the English

language is necessary;

• a multimedia performance data depends on the understandability of the C3D

motion files, DirectX and MAX/MSP modules;

• to understand a FITS file, it is necessary to understand the FITS standard, the

FITS dictionary and so on.

slide 10 These patterns occur in formal expressed knowledge, for instance in the semantic

web or in a schema which may extend or use several ontologies or other schemas.

It is also possible to express them in a dependency graph over namespaces, where

we can have a chain of dependencies between different namespaces that end in the

RDF standard.

slide 11 One question which arises is: how many dependencies may we have?

A systematic way is needed in order to limit the dependency chain.

To do it, the notion of Community Knowledge has been introduced which, according

to OAIS, aims at preserving digital information for a particular community.

The knowledge that is already available to the members of a community may be

formalized in order to obtain a Designated Community Profile, which is just a set of

modules that are assumed to be known by that community. This means that there is

no need to analyze the dependence of these modules since each member of the

community already knows them.

(In the slide an example shows some modules that depend on each other, and that

there is a community, identified as Tu, which knows the module t3 and t6).

slide 12 There are also various auxiliary notions:

 the notion of closure, i.e. a set of full direct and indirect dependencies of one

module (in the slide it is possible to see the closure of module tx and of module

ty, which is also the closure of profile tu).

 the notion of intelligibility gap, i.e. the smallest set of extra modules that the

identified community u needs in order to understand the module t.

slide 13 (The example in the slide shows that the gap between the module ty and the profile

u is empty since the profile u already knows the dependencies of module ty; while

the gap between module tx and profile u is the set of modules t1, t2, t4 and t5).

This means that in order to preserve a digital object t for a community with a profile

Tu, it is necessary to obtain and store only the gap of module t and profile u, since

the rest is already known.

Instead, in delivering an object t to an actor with a profile u, the extra modules that

constitute the set gap between module t and profile u have to be delivered to him in

order to return something intelligible.

slide 14 The notion of intelligibility can be exploited in archiving; in fact digital objects are

archived with some extra information and the notion of intelligibility is exploited in

order to identify the extra modules to archive.

(The example in the slide shows three different types of Archival Information

Packages (AIP) of the same object o1 for three different communities).

slide 15-

16

(The slide shows a symbolic example concerning module dependencies and

Designated Community Profiles; more specifically, there are three digital objects: o1,

which is a PDF document; o2, that is a FITS file; and o3, which is a ZIP file that

contains multimedia performance data. Furthermore, three Designated Community

Profiles have been designed: P1, which is used for astronomers; P2, that identifies

casual users and P3, which is used for multimedia users. The gaps between the

objects and the related profiles is made clear too).

slide 17 (This is an example from cultural testbed that presents an ASCII grid file and its

dependencies).

slide 18 These theories have been implemented by adopting semantic web languages for

modeling modules and dependencies, in this way they obtain advantages in terms of

extensibility and inheritance. There is a minimal top-level ontology where profiles

know some modules that depend on each other; moreover, there is a typology of

modules which can be extended as required.

slide 19 Another question which arises is: is there a clear way to identify which the

dependencies of an object are? Actually, to determine the dependencies is an

objective.

(In the example: if we have a a.java file and we want to compile it, its dependencies

include a java compiler; on the other hand, if the aim is to edit and read it, the file

would just depend on the ASCII format; finally if we want to run a program, it would

depend on a java virtual machine.

So, there are several dependency types which can be implemented easily using the

semantic web languages since the dependsOn relation has already been

specialized and the notion of intelligibility has been extended accordingly).

slide 20 Now, we are going to explain the issues concerning the preservation of provenance.

slide 21 CIDOC-CRM ontology has been extended in order to be able to document digital

objects.

CIDOC-CRM can be considered as a backbone to represent provenance

information.

On the architectural models there is the CIDOC-CRM on the top and below there

are several domain specific specializations of it; the metadata can be expressed as

instantiation of the above schema.

slide 22 (An example concerning the transfer of custody of information objects i.e. a painting

of Van Gogh shows the different owners of this object).

slide 23 (Here is how the derivation history can be represented; specifically there is an image

which is converted from JPEG format to PNG format, and another PNG image which

a smaller resolution which was derived from the initial PNG image).

slide 24 The Knowledge Manager is a type of software that permits one to deal with all these

tasks.

slide 25 It comprises two layers: a Semantic web Knowledge Middleware (SWKM) which is

the lower layer providing a set of core services for managing Semantic Web data

(storing, updating and so on.) and on top of this, there is a second layer, the Gap

Manager, which is responsible for the dependency management and for the

intelligibility gap.

slide 26 A picture shows the components of the CASPAR project and where the Knowledge

Manager is located.

slide 27 Concerning the available data, a Core ontology for the GapManager has been

identified and information has been exported regarding several formats from existing

registries, like PRONOM, from various tesbeds and from the registry of CCLRC; in

addition to which, an ontology for provenance has been developed.

slide 28 Regarding current deployments, there is one repository in Pisa which is used by

Finding Aids, another in Crete, in FORTH-ICS from which all the information about

the exporting data formats has been kept, and there are also various other

deployments.

slide 29 In brief, Gap Manager can aid the following tasks:

• the decision of what metadata needs to be captured and stored;

• the identification of the data objects that are in danger in case a module (e.g.

a software component or format) is becoming obsolete (or has already

vanished);

• the reduction of the metadata that has to be archived, or delivered to the users.

slide 30 The presentation above is followed by a demonstration concerning the Gap

Manager.

demo

example

1

In order to preserve a single digital file, a package containing all the dependencies

of the modules required to made the file intelligible should be created (this is what

has been called ‘closure’).

To preserve, the logo of CASPAR, for example, (a module whose identity is a file) it

is possible to access it on the web by a URL, add a name and a version of the

module, specify that its intelligibility depends on the availability of JPEG format;

then, after selecting the new module and asking for its closure, it is possible to

visualize its direct dependencies and its closure; so that these may be inserted into

a package that could be expressed in different packaging formats.

Next, by choosing one option from a list of different profiles, it is possible to see how

the knowledge that a Designate Community is supposed to have, determines the

contents of the package.

By selecting both the object to preserve and the profile of the community, it is

possible to ask the software a gap of the intelligibility, i.e. the comparison between

the knowledge of the community and the dependencies of the object to preserve. If

the result is an empty package, it means that no other information needs to be

added to the package since the object is already intelligible; instead, if the result is

that extra modules are required in order to make the resource intelligible to the

community, these must be added to the package.

demo

example

2

Supposing that a format is becoming obsolete and that the archive can visualize

which object depends on it: just by locating the module of the format it is possible to

see a list of the modules which are in danger.

demo

example

3

In this example we can imagine having a movie and a file with its overview and we

want to compress the two files; in order to preserve the new compressed file a new

module must be created with its appropriate dependencies, i.e. the movie file, the

description file and the module of the format of compression which was used. By

locating the modules that have been added, it is possible to know what the

respective dependencies and their closures are.

demo

example

4

This example shows how dependency types can be used.

A digital object can depend on others for different purposes.

If a module for a file (e.g. a.java) is created, some dependencies may be added to

this module (e.g. the java compiler to compile it, and the module of ASCII format that

is necessary in order to edit it).

After looking for the modules on which the file a.java depends on, the result will

contain both the java compiler and the ASCII modules; but, if one searches for

modules on which a.java depends to be edited, the result will contain only the ASCII

format module; analogously, changing the dependencies type from dependsEdit to

dependsCompile, then the result will contain only the java compiler module.

